
                   

JOURNAL OF COMPUTATIONAL PHYSICS144,280–298 (1998)
ARTICLE NO. CP986008

Solving Stiff Differential Equations
with the Method of Patches

David Brydon,∗,† John Pearson,† and Michael Marder∗
∗Department of Physics, Center for Nonlinear Dynamics, University of Texas at Austin, Austin, Texas 78712;

and†Los Alamos National Laboratory, MS B258, Los Alamos, New Mexico 87545
E-mail: brydon@lanl.gov or brydon@physics.utexas.edu; pearson@lanl.gov;

and marder@chaos.ph.utexas.edu

Received April 7, 1997; revised January 27, 1998

We introduce a new method for solving very stiff sets of ordinary differential
equations. The basic idea is to replace the original nonlinear equations with a set of
equally stiff equations that are piecewise linear, and therefore can be solved exactly.
We demonstrate the value of the method on small systems of equations for which
some other methods are inefficient or produce spurious solutions, estimate error
bounds, and discuss extensions of the method to larger systems of equations and to
partial differential equations. c© 1998 Academic Press

I. INTRODUCTION

Differential equations are called stiff when two or more very disparate time scales are
important. Although many special methods have been developed to integrate stiff sets of
differential equations, there remain problems governed by such enormously varying time
scales that existing methods are inefficient or produce spurious solutions. We have developed
a method that is insensitive to stiffness.

We break the domain of the problem into adjoining patches. On each patch, we approxi-
mate the original ordinary differential equations with linear equations for which analytical
solutions are known. Solution of the original problem reduces to solving continuous linear
approximate equations on these patches. Because the method finds the exact solution of
an approximate problem, rather than an approximate solution of the exact problem, it is
impervious to many numerical instabilities that plague other techniques. In addition, the
approximating functions can be chosen to agree with the exact functions so as to preserve
geometrical features of the original problem, such as fixed points. Many types of differential
equations can be solved with the method.

The linear method of patches solves two separate sub-problems to approximate the so-
lution of nonlinear initial-value ordinary differential equations. The first sub-problem is to

280

0021-9991/98 $25.00
Copyright c© 1998 by Academic Press
All rights of reproduction in any form reserved.



             

SOLVING ODE’S WITH THE METHOD OF PATCHES 281

approximate the nonlinear derivative functions on the right hand side of the original equa-
tions by linear functionsAx+ b. The second sub-problem is to solve the linear ordinary
differential equatioṅx= Ax+ b on each patch. The solutionx(t), continuous in time, is
the approximate solution for this patch. In contrast, most numerical methods apply a time
discretization scheme to the nonlinear derivative functions, and produce discrete solutions
whose validity depends upon the time step used and the function discretized. Analyzing the
interaction of a given discretization scheme with continuous nonlinear derivative functions
can be very difficult.

Our method is not without its own difficulties. There is no complete theory of how to
approximate a set of nonlinear functions by linear patches, and solvingẋ= Ax + b for
generalA is not trivial. While these challenges require more research, we feel splitting the
task into these separate sub-problems holds promise for obtaining verifiable and efficient
approximate solutions of many difficult differential equations.

The accuracy of the solution is determined by the sizeh of the side of a patch within which
the original problem is linearized. The error incurred in crossing a single patch isO(h3),
and the error involved in integrating over many patches of fixed size scales asO(h2). We
will show that there exists a more accurate linear approximation in one variable for which
the error crossing a single patch isO(h5) for sufficiently smooth functions.

This paper is organized as follows: Section II discusses a one variable example, the logistic
equation, in order to introduce the basic ideas of the method and to show differences between
this method and discrete methods. Computer implementation and other issues of the method
are outlined in Section III. We then discuss in detail the application of these ideas to some
difficult problems in two variables in Section IV. Finding an optimal procedure to fit linear
functions to nonlinear functions for this method is explored in Section V. Section VI gives
general bounds on the error of the method inN variables. In Section VII we discuss other
types of equations, and the extension to partial differential equations. Section VIII reviews
the literature, and is followed by a conclusion.

II. EXAMPLE IN ONE VARIABLE: THE LOGISTIC EQUATION

We begin by illustrating our method on the logistic equation

ẋ = f (x) = λx(1− x) (1)

because it provides a particularly simple context in which to describe the method, not
because it is particularly demanding to solve numerically. However, standard methods of
discretization can easily produce spurious solutions of Eq. (1) [1], and we will show why
our method is immune to these common difficulties. In one variable, we approximate the
curve representing the derivative function by a set of non-overlapping line segments.

We replacef (x) with fL(x),

fL(x) =
N−1∑
i=0

(ai x + bi )Ci (x), (2)

whereCi (x) is the characteristic function of the interval [xi , xi+1], equal to 1 on the interval
and 0 outside it, andx0< x1< . . . < xN partition the solution domain intoN patches. It is



            

282 BRYDON, PEARSON, AND MARDER

FIG. 1. Standard and fitted patches with solutions generated from them.

quite important to takex0= 0 andxN = 1, since they are fixed points off , but otherwise
the partition can be chosen in any way that best serves accuracy and speed.

We choose the constantsai , andbi so that

fL(xi ) = f (xi ) ≡ fi . (3)

Then

ai = fi+1− fi
xi+1− xi

, bi = fi − ai xi . (4)

The procedure of piecewise linearization is similar to the finite element method, except
that the piecewise linear sum represents the right hand side of the equation rather than its
solution. Figure 1 picturesf and fL from Eq. (1), along with the exact and approximate
solutions. Given an initial conditionxo that lies in patchi , we use the solution of

ẋL = fL(x) = ai x + bi (5)

which is

xL(t) = xoeai t + bi

ai
(eai t − 1). (6)

We can solve Eq. (6) exactly for the time whenxL(t) reaches a given value such as the patch
boundary. We find the time when the solution reaches the edge of the patch and repeat the
process on the next patch. Since the solution is continuous in time, a computer code can
return the solution at any times requested by the user.

II.A. Analytic Error Results for the Logistic Equation

The exact solution of the logistic equation (1) allows us to derive an analytical expression
for the difference between the exact solution and the solution of a linearization. We call this



                

SOLVING ODE’S WITH THE METHOD OF PATCHES 283

errore(t) ≡ x(t)− xL(t). The exact solution of (1) isx(t)= xo/(xo+ (1− xo)e−λt ) where
xo= x(0). The exact solution of the linearization isxL(t)= eai t xo+(bi /ai )(eai t−1), where
ai is the slope andbi is the intercept of the linearization on the patch. If we use a fixed patch
size1x and if xi is the value ofx on the left side of patchi , then we can calculate exactly
the error after crossing one patch. If we let the linearization agree with the exact function
on the patch boundaries, thenai andbi are given by (4). The error after crossing the patch is

e(ti+1) =
{

0, xi = 0, 1
1

6(1−xi )xi
1x3+O(1x4), xi 6= 0, 1

}
, (7)

independent ofλ. This1x3 dependence has two parts. The maximum difference between the
exact derivative function and the linearization isO(1x2) for twice-differentiablef [2]. The
second part comes from the time to cross a patch, proportional to1x except in the special
case of a fixed point in the patch which captures the solution for all time. In Section VI, we
show that this result holds generally for linearizations whose difference fromf isO(1x2).

II.B. Fitted Approximations

If instead of asking the approximationfL to agree withf at the endpoints of the patches,
we choosefL to minimize the mean square deviation fromf over the patch, then the error
isO(1x5), as shown in Section V. This improved accuracy is illustrated in Fig. 1.

II.C. Comparison to Difference Methods

Although the accuracy of our solution depends on1x, it does not depend onλ in Eq. (1).
Further, there is no stability criterion, which helps explain why our method is particularly
suited to stiff equations. Consider a traditional finite-difference time discretization of the
logistic equation. In the simplest case, one writes

xn+1 = xn +1tλxn(1− xn), (8)

wherexn+1 is the value ofx given by this finite difference equation at timetn+1= tn +1t .
For any given1t , one can findλ large enough that the discrete map (8) displays the period-

doubling bifurcation sequence, and exhibits solutions that bear no resemblance to those of
the original ordinary differential equation. Yee [1, p. 272] points out ways in which several
standard discretizations give spurious solutions. For example, the fourth order Runge–Kutta
method applied to the cubic logistic equation gives stable spurious fixed points below the
linearized stability limit, and these spurious fixed points could be achieved in practice (see
also [3] for a review of these issues). The problem can be eliminated in the simple case of
the logistic equation by a proper choice of1t , but in complicated sets of stiff equations,1t
is not easy to choose well, and our method does not require one to choose it. Since stability
is not an issue, we may focus on accuracy and efficiency, and upon geometrical features of
the equations.

III. DETAILS OF BASIC IMPLEMENTATION

The method of patches is easy to implement for a single variable, but in two dimensions
it acquires some difficulties which require additional explanation.



        

284 BRYDON, PEARSON, AND MARDER

III.A. Forming the Approximate Equations

We wish to solve autonomous ordinary differential equations of the form

dx(t)

dt
= f (x, y)

dy(t)

dt
= g(x, y).

(9)

We approximatef andg by linear equations on a set of patches in the(x, y) domain. We
solve the linear equations in each patch,

dxL(t)

dt
= axL + byL + c

dyL(t)

dt
= dxL + eyL + f,

(10)

wherea through f are constants. The approximate solution is built as it starts from a
given initial (x0, y0) and passes continuously through many patches. Example equations
are solved in Subsections IV.A and IV.B. Patches on a domain and an approximate solution
are illustrated in Figs. 2 and 3 of Subsection IV.A. In this section we describe the implemen-
tation and issues that it brings up.

The method places no constraints upon the sizes and shapes of the patches used, although
triangles can form a continuous surface, while rectangles cannot. Once a mesh has been
chosen, and the approximate linear functionsEf L constructed upon it, one should inspect
Ef L to find all their null-clines and fixed points for comparison with those of the original

derivative functionsEf . This can be done ahead of time for a given domain, or checked as the
code runs (a compile flag could turn this checking off and on: off for greater speed, and on to
verify a valid solution). If the null-clines and fixed points are not qualitatively of the correct
type, they may cause spurious solutions. If the fixed points of the exact function cannot be
found, or if they are too numerous or complicated, then we may have trouble knowing that
we have represented them faithfully. In that, we are no worse off than traditional methods.
However, many systems solved in practice have a finite number of fixed points that we can
represent accurately. In the case of unknown fixed points, one can use higher and higher
resolution, verifying that the solution is unchanged. In Section VI we prove that as the mesh
size goes to zero, the approximate solution converges to the exact solution.

Our working code calculates the linearizations on a regular triangular grid, given the
origin of the grid, as the solution proceeds. Since the code calculates the triangles as it goes,
the domain is infinite unless the user specifies boundaries for valid solutions. For example,
solutions to the Gaspar–Showalter equations (13) are positive for positive initial conditions.
An earlier code stored to disk a pre-calculated grid over a fixed domain. This proved to be
slower, as well as restrictive in memory requirements and the need to know the solution
domain before solving.

The simple way in which we construct the functionEf L in two variables is to evaluateEf
at the nodes of a rectangle, divide each rectangle into two triangular patches, and buildEf L

as the unique linear interpolation ofEf between these nodes. In patches containing a fixed
point, one may insist that the location of the fixed points ofEf and Ef L coincide, if possible.
It may be valuable to change variables so as to make their variations as uniform as possible.
An example of this procedure is given in Subsection IV.B when we change variables from
φ to f =−log10φ.



             

SOLVING ODE’S WITH THE METHOD OF PATCHES 285

III.B. Solving the Approximate Equations

For the one variable autonomous approximation,ẋ=ax+ b, we can solve exactly for the
time when the solution leaves the patch (if the solution never leaves the patch, the code simply
continues to report the solution at requested times). But for non-autonomous or nonlinear
approximating equations in one variable, or for generalN-variable equations, there is no
analytical formula for the time when the current solution leaves its patch. Bisection is a robust
and simple way to find the time at which the approximate solution leaves its patch. Local
time for the initial point is chosen to be zero. We then guess the time at which the solution
leaves the patch using the initialẋ and the patch size. The time is increased or decreased
until we have a point inside and a point outside the patch. We then choose an intermediate
time and iterate, always keeping one point inside and one point outside the patch.

When the solution leaves the current patch, we must know to which patch it goes. There-
fore a tolerance is specified, and we bisect until the solution is within toleranceoutsidethe
boundary of the current patch. Then we see which patch we have fallen into and repeat the
entire cycle.

The only danger of bisecting is that our first guess of the exit time might be at a point
when the solution has left the patch and returned, not giving us the first exit time that we
want, but a later one. We try to avoid this error by taking the first time guess, obtained by
dividing the patch size by the derivative at the point, and dividing it by a large number, for
example, 104. This small first time ensures that the corresponding first point is well within
the patch, near the initial point att = 0. We could skip this drastic reduction of the initial
time guess, which makes the code much less efficient, by analyzing the solution to see if
its time derivatives change sign for values of the variables on or near the patch. Since we
are solving a linear system, this is a trivial analysis. Sacks [4] does it for two variables.
If the time derivatives do not change sign, there is no danger of the solution leaving and
re-entering the patch.

III.C. Solving the Inhomogeneous System in Each Patch

We wish to solve nonlinear autonomous ordinary differential equations withN dependent
variables by solving a piecewise linearization. In summary, we will solve some nonlinear
ODE dx/dt= f (x), wherex(t) is a vector of dependent variables andf (x) is a vector of
nonlinear functions of the components ofx, by making a set of local linear approximations
to the right-hand side of the equation,f (x)≈ fL(x)={Ai x+ bi }, with a distinctAi x+ bi

defined on each patch.
The solution todx(t)/dt= Ax+b, x(t) a time-dependentN-vector,A a constantN× N

matrix,b a constantN-vector, is [5]

x(t) = eAtx(0)+
∫ t

0
eAt′b dt′, (11)

which can be integrated,

x(t) = eAtx(0)+ A−1(eAt − I )b, (12)

whereeAt is the matrix exponential ofAt, A−1 is the matrix inverse ofA, andI is the identity
matrix. This solution is always correct ifA−1 exists, although degenerate eigenvectors in
A require the Jordan form. Also, ifA has imaginary eigenvalues, then the solution involves
the sine and cosine functions. Efficient and accurate evaluation of Eq. (11) is crucial to



             

286 BRYDON, PEARSON, AND MARDER

the success of the method of patches, and there are many schemes which might be used.
Our goal in picking a scheme for evaluating the solution ofẋ = Ax+ b is to find the time
when the solution leaves some region, which usually requires evaluating the solution for
many different values oft . Discussion of these schemes will be left to future papers, but
we reference as an excellent starting point the paper by Moler and Van Loan [6]. Putzer’s
method [7] for evaluatingeAt applied to solvingẋ = Ax+ b has given robust solutions in
the two-variable case. It requires only the eigenvalues ofA in addition toA, b, andx(0),
and returns only scalar functions of time. It does not requireA−1 or the Jordan form. We use
it in our two-variable code. Putzer’s method will be more fully discussed in a later paper.
The main limitation of Putzer’s method is that it requires the eigenvalues ofA. If A is ill-
conditioned for eigenvalues, the error in the eigenvalues will lead to errors in the solution of
the linear differential equation. The impact of such errors requires further research. Since it
needs all the eigenvalues ofA, Putzer’s method is not practical for more than ten variables or
so, unless we make further approximations. Making further approximations to solve PDEs
is discussed in Section VII.

III.D. Issues of Continuity and Fitting

As shown in the one variable example in Fig. 1, fitting the approximate linear surface to
the exact nonlinear function, as opposed to connecting points in the nonlinear function, can
increase the accuracy of the solution for fixed patch size. Fitting the linearization to the exact
function separately in each patch (or finite precision roundoff) can result in discontinuities
between the linearizations in neighboring patches. Such discontinuities can cause an error
if the solution leaves the edge of one patch where the approximate derivative function is of
one sign and enters a patch where that approximate derivative function is of the opposite
sign. This is possible with discontinuous approximations because of our bisection method
of solution, which follows the approximation until it is just outside of the patch boundary.
The solution can leave the edge of the first patch that has, say, a positive derivative in the
direction perpendicular to the patch boundary crossed. Control is passed to the neighboring
patch, which has a negative derivative. But the solution in this patch then returns to the
first patch. A long “game of ping-pong” can be played in this way across the edge between
two such patches. We observed this behavior in Eqs. (13). To avoid this ping-pong effect, a
code can check for such an event and either make the nodes agree to machine precision or
move zero from the edge to within one of them. Since this problem is so easily corrected
locally, we plan to use rectangles in future codes. Although rectangles form a discontinuous
approximation, they simplify coding and make theN-variable problem easy to implement.

IV. EXAMPLES IN TWO VARIABLES

We now intend to demonstrate that the method of patches provides an efficient, reliable,
and easy way to integrate notoriously stiff differential equations. We will focus upon two
pairs of equations in two variables, one describing chemical kinetics, and the other describing
a laser oscillator.

Our demonstration is based upon direct comparison of the new method with packages
designed for stiff ODEs. Of the packages, we had the greatest satisfaction with CVODE [8],
which successfully solved equations for which other packages failed, and used much less
computer time to return solutions to equations that the others could solve. Other packages
tried were LSODE, IMSL stiff routines, and Numerical Recipes stiff routines.



           

SOLVING ODE’S WITH THE METHOD OF PATCHES 287

One notable difference between the method of patches and finite-difference methods
is that many standard methods fail to solve the example equations, and the variable-order,
variable time-step packages that can solve them require the tolerances to be set very precisely
in order to get valid solutions. While the small tolerances often give very accurate solutions,
they cannot be increased in order to get faster but less accurate solutions. With the method
of patches, there is no stability requirement to meet, so efficiency and accuracy can be
traded, provided key aspects such as fixed points are approximated correctly. Thus, while
all methods can fail when numerical grids are too coarse, the failure of a package like
CVODE can be somewhat mysterious, while in the method of patches failure is directly
tied to failure of the approximation to capture a qualitative geometrical feature of the original
problem. Numerical causes of failure are also more easily analyzed, because they arise in
the solution of the continuous linear ODEdx/dt= Ax+ b.

IV.A. Gaspar–Showalter Equations

The Gaspar–Showalter equations arise in modeling the ferrocyanide–iodate–sulfite chem-
ical reaction [9]. The variableX represents the concentration of HSO−3 , andY represents
the concentration of H+,

d X

dt
= −(k−1+ ko + k2)X − k3k4XY2

ko + k5+ k4X
+ k1(Aoko + k−1X)Y

ko + k1Y

dY

dt
= (k−1+ k2)X+ 3k3k4XY2

ko+ k5+ k4X
− k1(Aoko+ k−1X)Y

ko+ k1Y
− 2k3Y2+ ko(Yo−Y)

(13)

with values of rate constants,

k1 = 5.0× 1010, k2 = 6.0× 10−2, k3 = 7.5× 104

k4 = 2.3× 109, k5 = 30, ko = 1.5× 10−3

k−1 = 8.1× 103, Ao = .09, Yo = 3.0× 10−3

and initial conditionsX(0)=Y(0)= 1× 10−5.

IV.A.1. Results

Figure 2 shows triangular patches approximatingd X/dt anddY/dt on a small region
in (X,Y) space, using a−log10 scale. Figure 3 is a schematic of an initial condition on
this region and its subsequent time evolution through several triangular patches. Table 1
shows the fractional error and cpu time needed for the two solvers. At these values of
the rate constants, studied in [9],Y(t) oscillates between 10−10 and 10−2, as shown in
Fig. 4. Both CVODE and the method of patches (MOP) returned the correct amplitude
of the oscillations. When converged, both codes returned an average period of 857.183 s
over 20,000 s of model time. But as the patch size increased, MOP returned solutions with
shorter and shorter period. The fractional error shown in Table 1 is the difference between
the converged period and that solution’s period, divided by the converged period. With
sufficiently tight tolerances, CVODE returned solutions with no error, but a minimum CPU
time of 1.3 s. For CVODE, tighter tolerances took more CPU time but returned the same
solution, while looser tolerances gave either a failure to converge flag, or no error flag but
spurious results such as negative values of the variables, not mathematically allowed in these
equations for positive initial conditions. CVODE went to a false negative fixed point at a



        

288 BRYDON, PEARSON, AND MARDER

FIG. 2. Triangular patches approximatingd X/dt anddY/dt. A −log10 scale is used for all axes.

FIG. 3. Solution passing through many triangular patches.



           

SOLVING ODE’S WITH THE METHOD OF PATCHES 289

TABLE 1

Solution Accuracy and cpu Time (s) for CVODE and the Method of Patches

Agreement with CVODE period MOP cpu time CVODE cpu time

100% 26.4 s 1.3 s
99.98% 5.7 s Fails
97.4% 0.5 s Fails
68.4% 0.3 s Fails
20.8% 0.2 s Fails

Note.This illustrates how the method of patches can trade accuracy for efficiency by changing
the patch size. CVODE can return a converged solution for tight enough tolerances. At looser
tolerances, CVODE either cannot converge or gives an erroneous solution.

finite value, or to negative infinity, depending on the tolerance settings. Thus CVODE could
give an accurate solution, but it could not give a less accurate but geometrically correct and
more efficient solution.

This implementation of MOP, limited by a fixed patch size and by not fitting the ap-
proximation to the derivative functions, returned a converged solution only for very high
resolution, requiring 26.4 s of CPU time for a totally converged solution, 5.7 s for 99.98%
accuracy, but only 0.5 s for 97% accuracy. Solutions exhibiting oscillations of correct am-
plitude but of much shorter period required just 0.2 s.

IV.A.2. Technical Details and Discussion

Both codes were timed using thetimeutility on a Silicon Graphics workstation with an
R10K processor. They were both compiled by cc -64 -mips4 -r10000 -O3 using the−lfastm

FIG. 4. Method of patches solution forY(t) in Gaspar–Showalter equations.



          

290 BRYDON, PEARSON, AND MARDER

library of fast math functions under theIrix 6.2 Operating System. CVODE was set for
stiff equations, using the BDF method, Newton iteration with the dense linear solver, and
automatic Jacobian. The only option turned on was MXSTEP= 200000, because the default
limit of 500 was not enough for CVODE to complete some steps. The error tolerances
for CVODE were (RTOL= 1.0× 10−9,ATOL={1.0× 10−9, 1.0× 10−15}) for the most
efficient converged solution.

In order to cover the range 10−10 to 10−2, the method of patches uses a regular grid in
logarithmic (base 10) coordinates. We used a grid of continuous triangular patches created
by sampling the derivative functions on a rectangular grid in−log10 (X,Y) centered at (2, 2),
and bisecting these rectangles along a diagonal. The rectangular grid spacing was (0.9, 0.9)
for the solution requiring 0.2 s. A parameter of the method of patches, the tolerance window
outside of a patch within which the solution is required to be located (Subsection III.B),
was 0.08. If the tolerance was turned up to 0.8, the code went to a false fixed point. For the
converged solution, grid spacing was (0.0003, 0.0003) and tolerance 0.0004. Note that the
tolerance was larger than the grid spacing. This means that the initial guess of time step to
reach the edge of the patch is likely to be accepted, meaning less time spent bisecting int to
find when the solution leaves the patch. It also tends to give more accuracy because using
a linearization beyond the edges of the patch effectively averages the original function. An
adaptive grid in the original variables would be much more efficient, as roughly 40–50%
of this code’s CPU time is spent evaluating the C functionpow(10, x) required by the
logarithmic conversion. Storing the grid on disk is restrictive and slower, as the machine is
able to calculate the linearization faster than it can be looked up in memory. This may vary
with hardware.

A notable risk in using the method of patches is that one may introduce geometrically
incorrect features into the problem. This difficulty is well illustrated by trying to solve the
Gaspar–Showalter equations (13).

Upon linearizing the derivative functions on a (0.12, 0.12) grid, the null-clines (curves
defined byd X

dt = 0 or dY
dt = 0) are not captured correctly. Many spurious fixed points appear

when the linearized null-clines cross where they should not. Such false fixed points can
be detected by comparing, in each patch, fixed points of the linearization with those of the
exact system to verify that they are accurate in type and location. We show in Section VI, for
differentiable functions, that in the limit where patch size goes to zero, the approximate and
exact solutions converge. Upon proceeding to a (0.09, 0.09) uniform grid, the correct null-
cline structure is recovered. Clearly a non-uniform grid can bring computational advantages
in such a case, but we have not yet proceeded to such refinements of the method. False fixed
points are easy to detect and correct. Other features of a dynamical system which determine
the qualitative behavior may be more difficult to preserve. Qualitative dynamics is an area of
active research which is applicable to constructing linearizations for use in this method [4].

IV.B. Laser Oscillator Model

This model [10, p. 32] represents a ruby laser oscillator whereφ is photon density andn
is dimensionless population inversion, and is specified by

dn

dt
= −n(αφ + β)+ γ,

dφ

dt
= φ(ρn+ σ)+ τ(1+ n),

(14)



            

SOLVING ODE’S WITH THE METHOD OF PATCHES 291

with values of parametersα= 1.5× 10−18, β = 2.5× 10−6, γ = 2.1× 10−6, ρ= 0.6,
σ = 0.18, τ = 0.016 and initial conditionsn(0)=−0.8, φ(0)= 10−12.

IV.B.1. Package Solver

In [10, p. 46], Byrne and Hindmarsh say, “This problem is challenging because it is stiff
initially, but mildly damped and oscillatory later.... The catch is that either quite a little
analysis to observe this is required or some numerical computation must be done.” To solve
this problem with discrete methods, one must first discover that it is stiff, pick a method
appropriately, and choose good tolerances. To make the solution efficient, one must choose
a stiff method in the early part of the run, and then switch to another method to finish it.

IV.B.2. Method of Patches

The photon densityφ varies from 10−12 to almost 1014 over the course of the solution.
To use a regular triangular mesh with sufficient resolution, we converted to a new variable
f : φ= 10f , with f ∈ [−12, 14] andn∈ [−1, 1]. We used a uniform grid with 260 divisions
along f and 10 alongn. This mesh was adequate to return accurate solutions. No analysis
was required, nor even the knowledge that the equations are stiff. Solution from our method
is shown in Fig. 5. A parameter of the method of patches, the tolerance window outside
of a patch within which the solution is required to be located (Subsection III.B), was 0.01.
Neither the solution nor the required computer time varied much when this number was
changed over a range of reasonable values.

FIG. 5. Method of patches solution for laser equation.



               

292 BRYDON, PEARSON, AND MARDER

IV.B.3. Time Needed to Solve

These equations are less demanding than the previous example. Both CVODE and MOP
returned qualitatively accurate solutions in a roughly constant amount of cpu time for a wide
range of tolerances. Using the same computer and compiler as reported in Subsection IV.A.2,
CVODE with parameters and tolerances set as in [10, p. 46] (RTOL= 1.0× 10−6,ATOL=
{1.0× 10−9, 1.0× 10−6}) required 0.8 s to solve 16 s of model time. MOP required 0.1 s on
the same machine. A plot of the derivative functions shows that they are very nonlinear only
in a small part of the domain, so efficiency could be improved by using a lower resolution
in most of the mesh, and a higher resolution for this region.

IV.B.4. Discussion

Note that Byrne and Hindmarsh [10, p. 46] used initial conditions(−1, 0)while we used
(−0.8, 10−12). The initial condition in f is −12 (φ is 10−12) because a finite regularly
spaced mesh in log space cannot reach minus infinity. The initial condition inn is −0.8
because asn goes to−1, our solver code generates spurious solutions due to round-off error
in calculating the matrix exponential. The numerically calculated solution att = 0 disagrees
by more than 1% with the initial condition, enough to cause the solver code to fail. This
is a hint of problems that lurk in solving the general linear equationẋ= Ax + b, where
matricesA ill-conditioned for matrix exponentiation can lead to round-off errors. A more
sophisticated computer code could better handle these extreme conditions.

V. SEARCHING FOR THE PERFECT FIT

There is considerable freedom available in choosing how to represent a nonlinear function
f (x) by a set of linear functions over patches. The simplest choice, which we call the
standard method, uniquely determines the linearization by requiring it to agree with the
original function on the nodes of each patch. However, this choice almost certainly does
not minimize overall inaccuracy in the approximate solution ofẋ= f (x). Finding the
linearization that minimizes the error in the solution is an interesting and open question. In
one variable, it is possible to increase the accuracy in the solution after crossing a single
patch fromO(1x3) toO(1x5). To do this, one can choose a linear approximation tof by
findinga andb to minimize ∫ xL+1x

xL

( f (x)− l (x))2 dx, (15)

wherel (x)=ax+ b andẋ= f (x). This only requires solving a linear equation. It gives an
error in the solution of the differential equation, whenx= xL +1x, of

f ′′(xL)(6 f ′(xL)
2− f (x) f ′′(xL))

720f (xL)3
1x5+O(1x6), (16)

where′ indicates derivative with respect tox. Note that this expression has only first and
second derivatives off , just as theO(1x3) result for standard linearizations, derived in
Section VI. Also note that the standard error ofO(1x3)comes from the maximum difference
between the exact and linear functions beingO(1x2) and the time to cross a patch being



             

SOLVING ODE’S WITH THE METHOD OF PATCHES 293

O(1x). But that analysis does not explain this fittedO(1x5) result, since the maximum
difference between the exact and linear functions is stillO(1x2) for the fitted case, and
the time to cross the patch is stillO(1x). We get an extra two orders when the differential
equation is solved. However, this fifth-order result holds only at the midpoint and end of
the time interval used to cross the patch, as we explain below.

The time when the solution leaves the patch istout. For xL < x< xL + 1x, whent is
tout/n, n≥ 1, a time when the solution is on the interval, the error is usually third-order. For
the standard case, the error at timetout/n is

(2− 3n) f ′′(xL)

12n3 f (xL)
1x3+O(1x4) (17)

and for the fitted case, the error at timetout/n is

(2− 3n+ n2) f ′′(xL)

12n3 f (xL)
1x3+O(1x4), (18)

except forn= 1, 2, when it is fifth-order.
Note that the slope and intercept of the linearization,a andb, can be expanded as power

series in1x. We can solve for the coefficients so as to zero out higher and higher order
terms in the solution error after crossing one patch. A hierarchy of equations results, so that
if we pick the first coefficient, the others are determined. For the logistic equation (1), this
procedure to zero out the 0–4th order terms in the error with two coefficients each in the
series fora andb (the 0th order term is free) returns two values of slope and intercept that
zero all orders in the error. In other words, the exact and approximate solutions agree exactly
at the boundary. This is not too surprising, since the logistic solution is known analytically
and contains exponentials as does the linear solution. But it is an interesting example of the
cancellation from the linear derivative being first too fast, then too slow, such that the two
solutions agree exactly at the end of the interval.

One meaningful way to determine the hierarchy of equations mentioned in the previous
paragraph is to demand that the slope and intercept of the approximation converge to the
standard case in the limit1x→ 0. This also implies that the approximation goes to the
exact function in that limit. Since this hierarchy of equations is generally very complex, an
interesting question is: Can we avoid it by finding some measureµ(x) and some functional
G( f, l ) such that an equation involving

∫
G( f (x), l (x))µ dx returns anl (x) that gives

small error is the solution? We have shown that minimizing the distance gives fifth-order
error for one variable, but that did not take into account the fact that the error in the function
contributes to the solution error in a way that depends onx.

For multi-variable systems, this fifth-order result cannot hold in general for a fixed grid
spacing1x. This is because the solution must cross the entire interval in each variable to
get the fifth-order result (Even more, we must yet prove the result forN variables if the
solutiondoescross the entire interval.) However, one can imagine constructing a grid such
that the solution always crosses the entire interval in each variable. If our fifth-order result
holds for N coupled variables, then this hypothetical grid would give fifth-order solution
error. Of course, our code only finds the edge approximately, so the numerical error would
in fact be third-order. While our experience shows that the actual solution error is greatly
reduced by fitting, we do not know how the error varies with the fraction of the cell crossed
in each variable.



              

294 BRYDON, PEARSON, AND MARDER

VI. ERROR ANALYSIS

We set a bound on the error in the solution,e(t)= x(t) − xL(t), wherex(t) is a vector
of dependent variables that solve the ordinary differential equationẋ = f (x), and where
xL(t) is the time integrated solution of the piecewise linearization off (x), ẋL(t)= fL(x).

The main results from this section are:

(1) The global error (error after crossing many patches) isO(h2).
(2) The local error (error after crossing one patch) isO(h3), unless there is a stable

fixed point that traps the trajectory in the patch for all time, in which case the error isO(h2),

whereh is the maximum of the patch sizes in each variable,1xi .

VI.A. Maximum Error of Piecewise Linearization

In this section, we assume that the maximum difference between the linearization and
the exact function scales ash2. This is easily proven in one variable for linearizations which
intersect the exact function twice on each patch.

In one variable, we linearize the exact derivative functionf (x) by specifying a uniform
grid spacingh, which is the patch size, sampling the nonlinear functions on the grid points,
and connecting these points to form a continuous, piecewise linear approximation to the
nonlinear function. Following this procedure, we find that the error between the exact
function f (x) and the approximating functionfL(x) isO(h2), or more precisely

f (x)− fL(x) ≤ 1

2
f ′′(x)h2+O(h3), (19)

where f ′′ is the second derivative with respect tox. Note that Eq. (19) implies that our
approximate solutionxL(t) goes to the exact solutionx(t) ash goes to zero.

VI.B. Global Error

We mean by the “global error” the difference between the exact and approximate solutions
after crossing many patches. Using the bound onf (x) − fL(x) that is appropriate for the
N-variable linearization used, similar to Eq. (19), we can bound the error in the solution
e(t)= x(t) − xL(t) for a given timet = T , wherex(t) is the exact solution oḟx = f (x),
andxL(t) is the solution to the linearizatioṅxL = fL(xL). In the following, we assume this
bound isO(h2). Expandingf (x) in a power series inxL(t),

f (x(t)) = f (xL(t))+ ∂ f (xL)

∂xL
(x(t)− xL(t))+ . . . , (20)

and defining1 f = f (xL)− fL(xL), we have that

dej

dt
= [ f (x(t))− fL(xL(t))] j = 1 f j + Jjkek + H, (21)

whereej is the j th component ofe, J is the Jacobian∂ f j (xL)/∂xLk , andH represents the
higher order terms in the expansion. Then we have that

1

2

d

dt
|e|2 = 1

2
ej

dej

dt
= 1

2
ej1 f j + 1

2
ej Jjkek + 1

2
ej Hj , (22)



                

SOLVING ODE’S WITH THE METHOD OF PATCHES 295

where summations overj and k, respectively, are indicated. Taking the time derivative
of |e|2,

1

2

d

dt
|e|2 = |e| d

dt
|e| ≤ 1

2
(|e| |1 f | + |e|2|J| + |e| |H |) (23)

by the previous equation and the triangle inequality. Then dividing by|e|,

d

dt
|e| ≤ 1

2
(|1 f | + |J| |e| + |H |). (24)

Equation (19) shows that|1 f | ≤Ch2, whereC is a constant proportional to the maximum
of the second derivatives, andh is the maximum of the1xj ’s. If f is Lipschitz on the
domain of the solutionxL(t), i.e., | f (x)| ≤ K |x|, then the triangle inequality on the Taylor
expansion off gives|H(x, t)| ≤ K |x| on this domain. Then sinceH is a function of(e, t),

d

dt
|e| ≤ Ch2+ (|J| + K )|e|, (25)

and by Gronwall’s inequality,

|e(t)| ≤ Ch2
∫ t

0
eG(t−s) ds, G(t) =

∫ t

0
(K + |J(r )|) dr. (26)

This shows the error in the solution,e(t)=O(h2). |J| is the matrix norm defined by
‖J‖p= supx 6= 0

‖Jx‖p

‖x‖p
[11].

VI.C. Local Error

We mean by the “local error” the difference between the exact and approximate solutions
after crossing one patch. This error consists of two parts: the first comes from the way in
which the difference between the exact and approximate derivative functions scales with
patch size, and the second from the way in which the time to cross the patch varies with
patch size.

VI.C.1. Relation between Time to Cross Patch and Patch Size

For each componentj of the solution of the linearization, the distance travelled in vari-
able j while crossing the patch is greater than or equal to the time spent in the patch,
multiplied by the minimum of the absolute value of thej derivative on the patch. This
is expressed by|1xj | ≥1t |(ẋL) j (t)|min, and gives for each variablej an expression
1t j ≤ |1xj |/|(ẋL) j (t)|min. Since1xj ≤ h, whereh is the maximum of the patch sizes
in each variable, we can write that

1t j ≤ h/|(ẋL) j (t)|min. (27)

The largest of these1t j bounds1t , the time spent in the patch. This seems problematic if
the derivative changes sign or is everywhere zero, since then1t j is infinite. But if some of
the1t j are infinite, then the largest finite one is the upper bound on1t . If all of the1t j are
infinite, then this expression cannot bound1t . A fixed point is in the patch, which may be



                

296 BRYDON, PEARSON, AND MARDER

attracting for all points in the patch. In that case1t is infinite, because the solution never
leaves the patch. Then1t cannot be shown to be proportional toh. However, at most one
patch, which would be the last, in a given solution, has this property.

To summarize, we conclude that

1t = O(h), (28)

whereh is the maximum of the patch sizes in each variable1xj , unless there is a stable
fixed point that captures the solution in the patch.

VI.C.2. Error between Exact and Approximate Solutions after Crossing One Patch

The error between the exact and approximate solution ise(t)= x(t)− xL(t). Expanding
f (x) in a power series inxL , we have that

dej

dt
= f (xL)− fL(xL)+ Jjkek + Hj (e, t), (29)

whereej is the j th component ofe, J is the Jacobian, andH represents the higher order
terms in the expansion. Assuminge(0)= 0, the error after crossing one patch is

ej (1t) =
∫ 1t

0
( f (xL)− fL(xL)) j + Jjkek+ Hj (e, t)) dt ≈ ( f (xL)− fL(xL)) j1t (30)

as1t→ 0. We showed in the previous section that1t =O(h), so

lim
1x→0

e(1t) = lim
1x→0

( f (xL)− fL(xL))1t = O(h2)O(h) = O(h3), (31)

since we showed above thatf (xL)− fL(xL)=O(h2) and that1t =O(h) as1x→ 0. So
the error across one patch isO(h3) unless there is a stable fixed point in the patch that
captures the solution for all time. In that case the above analysis gives that the error is
O(h2), since f (xL)− fL(xL) is still O(h2) but1t cannot be related toh in the patch that
contains the fixed point.

VII. DISCUSSION

The method of patches can be applied to many types of equations, including non-
autonomous, higher-order, and partial differential equations, as well as boundary-value
problems using shooting methods (see [12] for exact solutions to nonlinear problems).
Mathematica [13] has been very useful in generating solutions to nonlinear ODEs, in code
development, and in analysis.

In the two variable examples in Section IV, our method yielded faster solutions to ordinary
differential equations than several well-known solvers. However, this work was originally
motivated by our desire to integrate the partial differential equationu̇ = D∇2u + f (u)
with f (u) given by the Gaspar–Showalter model, Eq. (13), andD a diagonal matrix of
diffusion coefficients. If we use a finite-difference approximation to represent the spatial
derivative operator, a straightforward approach is then a split-step method, solving the
diffusion equation exactly and using our ODE code for the reaction part. Another approach
is to incorporate directly into the method the terms arising from the finite-difference diffusion



          

SOLVING ODE’S WITH THE METHOD OF PATCHES 297

operator. This can be done by noticing that, in the ODEs that result from finite-differencing,
the derivative terms are linear and so can be absorbed into our linearization. This gives a
set of coupled linear ordinary differential equations that can in principle be solved with
the method. However, this set of equations is now anN variable system whereN is the
number of spatial points times the number of dependent variables. In practice, we will solve
these equations by breaking the matrix into more manageable pieces. Our working reaction-
diffusion code approximates spatial neighbors by their value at the beginning of a time step.
Some other strategies to approximate derivative terms are mentioned in the next section.

VIII. REVIEW OF THE LITERATURE

A careful search has not revealed precisely this method published elsewhere. However, we
have found many similar ideas, and a large literature on calculating the matrix exponential,
which remains a challenging problem due to round-off error and matrices ill-conditioned for
exponentiation. Using the matrix exponential to solve initial value differential equations.
Carroll [14] exponentiates the Jacobian. A long-standing work by Pavlovet al. [15, 16]
retains nonlinear terms of the original equations. Applying the matrix exponential to solving
PDEs, Graziani [17] solves linear and radiation diffusion problems using matrix decomposi-
tion, furthering the work of Richardsonet al.[18]. Zhonget al.[19] solve PDEs by breaking
the spatial domain into sub-domains and approximating terms outside the sub-domain as
constant. The method of patches can be combined with these last two schemes to integrate
nonlinear PDEs.

IX. CONCLUSION

This paper is a proof-of-principle demonstration of the basic ideas of the method of
patches. A few rudimentary improvements to make it faster and more accurate than the
code discussed in this paper have yielded solutions on the order of one hundred times faster
for the same accuracy. Much more work is needed on accurate and efficient solution of the
N-variable problem, generating accurate and valid approximations and solutions, and better
methods for partial differential equations, to name a few areas. To become more efficient,
the method must change patch size adaptively. Manipulating the linearization to preserve
geometric features such as fixed points and null-clines may allow even larger patches while
still returning qualitatively correct solutions. Since the method can solve stiff equations
without resorting to implicit techniques, it is especially promising for solving stiff partial
differential equations on parallel computers.

ACKNOWLEDGMENTS

We thank many of our colleagues for useful discussion and help, especially Ade Lee for help with initial coding
efforts and suggestions, John Cogdell for editing, and also James Hyman and Aric Hagberg for their input.

REFERENCES

1. H. C. Yee, P. K. Sweby, and D. F. Griffiths,J. Comput. Phys.97, 249 (1991).

2. M. H. Schultz,Spline Analysis(Prentice Hall, New Jersey, 1973).

3. H. C. Yee and P. K. Sweby,Nonlinear Dynamics and Numerical Uncertainties in CFD, Technical Report
TM-110398, NASA, 1996.



     

298 BRYDON, PEARSON, AND MARDER

4. E. Sacks, Automatic qualitative analysis of dynamic systems using piecewise linear approximations,Artificial
Intelligence41, 313 (1990).

5. M. Hirsch and S. Smale,Differential Equations, Dynamical Systems, and Linear Algebra(Academic Press,
Orlando, FL, 1974).

6. C. B. Moler and C. Van Loan, Nineteen dubious ways to calculate the matrix exponential,SIAM Rev.20, 801
(1978).

7. E. J. Putzer, Avoiding the Jordan canonical form in the discussion of linear systems with constant coefficients,
Amer. Math. Monthly73, 2 (1996).

8. S. D. Cohen and A. C. Hindmarsh, CVODE, A stiff/nonstiff ODE solver in C,Comput. Phys.10, 138 (1996).

9. V. Gaspar and K. Showalter, A simple model for the oscillatory iodate oxidation of sulfite and ferrocyanide,
J. Phys. Chem.94, 4973 (1990).

10. G. Byrne and A. Hindmarsh, Stiff ODE solvers: A review of current and coming attractions,J. Comput. Phys.
70, 1 (1987).

11. G. H. Golub and C. F. V. Loan,Matrix Computations(Johns Hopkins Press, Baltimore, 1989).

12. A. D. Polyanin and V. F. Zaitsev,Handbook of Exact Solutions for Ordinary Differential Equations(CRC
Press, Boca Raton, FL, 1995).

13. S. Wolfram,Mathematica(Addison–Wesley, Redwood City, CA, 1991).

14. J. Carroll, A matricial exponentially fitted scheme for the numerical solution of stiff initial-value problems,
Comput. Math. Appl.26, 57 (1993).

15. B. V. Pavlov and O. E. Rodionova, The method of local linearization in the numerical solution of stiff systems
of ordinary differential equations,Comput. Math. Math. Phys.27, 30 (1987).

16. B. V. Pavlov and O. E. Rodionova, Numerical solution of systems of linear ordinary differential equations
with constant coefficients,Comput. Math. Math. Phys.34, 535 (1994).

17. F. R. Graziani, The product formula algorithm applied to linear and radiation diffusion,J. Comput. Phys.118,
9 (1995).

18. J. L. Richardson, R. C. Ferrell, and L. N. Long, Unconditionally stable explicit algorithms for nonlinear fluid
dynamics problems,J. Comput. Phys.104, 69 (1993).

19. W. Zhong, J. Zhu, and Z. Xiang-Xiang, On a new time integration method for solving time dependent partial
differential equations,Comput. Methods Appl. Mech. Eng.130, 163 (1996).


